UNIVERSITAT POLITECNICA DE CATALUNYA
BARCELONATECH
Enginyeria de Sistemes TIC

Implementation of a 5G network using SDRs

and open-source software
5G Network Setup — Enginyeria de Sistemes TIC

Anass Anhari Talib

August 25, 2022

Contents
1 Introduction

2 5G implementation

2.1 OAICNBG . . . o e
211 Setup . . ..
2.1.2  Configuration . . . . . . . ...
2.1.3 Starting the CN6G . . . . . . . . .. o

2.2 OAIgNB . . . e
2.2.1  Setup . ... e
2.2.2 Configuration . . . . . . . .. L
2.2.3 Startingthe gNB . . . . . . . ..o

2.3 UE: Quectel RM500Q-GL + EVB . . . . . . .. . .
2.3.1 Pre-configuration . . . . .. ... Lo
2.3.2  Setup . ... e
2.3.3 NetworkManager setup . . . . . . . . . . ... L

3 Hardware architecture

5G Network Setup

—_ =

—_ O © O©W OIS o N N

ol
S


http://creativecommons.org/licenses/by-nc-sa/3.0/es

1 Introduction

For the project, we will need to configure and run a 5G end-to-end setup using SDRs and
Openairinterface5G, an Open Source software. For this reason, we will need to configure:

e OAI CN5G. The core network of the 5G Network that we will be setting up. Hence,
a database will be required to be able to register SIM’s as a normally done in cellular
networks for controlling data, traffic, and so on.

o OAI gNB. The 3GPP 5G Next Generation base station which supports the 5G NR (5G New
Radio). Therefore, we will setup the base station and configure it to be able to integrate
the SDR, specifically, an URSPB200-mini.

e Quectel RM500Q-GL + Quectel 5G-M2 EVB. A 5G module will be required to test the
5G Network Setup, being able to test the association between the 5G module (with a SIM)
and the gNB (base station). This module and evaluation board will be used as UE (user
equipment).

2 5G implementation

2.1 OAI CN5G
2.1.1 Setup

Note: It is crucial to work within a native python3 environment. For example, testing OAI
within an Anaconda environment the setup could not be completed due to multiple environment
dependencies errors.

First of all, we will need to install the necessary tools and dependencies as shown in the Code

(nsse ) (ner) (weF)  (per ‘ (uom) (AF)

MF

Data Network

Figure 1: 3GPP 5G System Architecture. Source: ResearchGate

2 5G Network Setup


https://gitlab.eurecom.fr/oai/openairinterface5g
https://www.researchgate.net/figure/3GPP-5G-system-architecture-3_fig3_342966564

sudo apt install -y git net-tools putty

sudo apt install -y apt-transport-https ca-certificates curl

— software-properties-common

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
sudo add-apt-repository "deb [arch=amd64]

— https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"

sudo apt update

sudo apt install -y docker docker-ce

# Add your username to the docker group, otherwise you will have to run in sudo
< mode.

sudo usermod -a -G docker $(whoami)

reboot

# https://docs.docker.com/compose/install/

sudo curl -L

— "https://github.com/docker/compose/releases/download/v2.12.2/docker-
< compose-$(uname -s)-$(uname -m)" -o

— /usr/local/bin/docker-compose

sudo chmod +x /usr/local/bin/docker-compose

Listing 1: OAI CN5G

Then, we need to clone the oai-cnbg-fed repository and pull and tag all the docker images
(2). All these containers represent the components/modules defined at the 5G architecture (Fig.
1).

5G Network Setup 3



# Git oai-cnbg-fed repository
git clone https://gitlab.eurecom.fr/oai/cnbg/oai-cnbg-fed.git ~/oai-cnbg-fed

# Pull
docker
docker
docker
docker
docker
docker
docker
docker

# Tag docker

docker
docker
docker
docker
docker
docker
docker

docker images

pull
pull
pull
pull
pull
pull
pull
pull

image
image
image
image
image
image
image

oaisoftwarealliance/oai-amf:develop

oaisoftwarealliance/oai-nrf:develop

oaisoftwarealliance/oai-smf:develop
oaisoftwarealliance/oai-udr:develop
oaisoftwarealliance/oai-udm:develop
oaisoftwarealliance/oai-ausf:develop
oaisoftwarealliance/oai-spgwu-tiny:develop
oaisoftwarealliance/trf-gen-cnbg:latest

tmages

tag
tag
tag
tag
tag
tag
tag

oaisoftwarealliance/oai-amf:develop oai-amf:develop
oaisoftwarealliance/oai-nrf:develop oai-nrf:develop
oaisoftwarealliance/oai-smf:develop oai-smf:develop
oaisoftwarealliance/oai-udr:develop oai-udr:develop
oaisoftwarealliance/oai-udm:develop oai-udm:develop
oaisoftwarealliance/oai-ausf:develop oai-ausf:develop
oaisoftwarealliance/oai-spgwu-tiny:develop

— oal-spgwu-tiny:develop
docker image tag oaisoftwarealliance/trf-gen-cnbg:latest trf-gen-cnbg:latest

Listing 2: oai-cnbg-fed repository setup

Lastly, we copy a pair of configuration files (the main configuration file and the database) to
their respective paths.

o Copy docker-compose-basic-nfr.yaml to /oai-cnbg-fed/docker-compose

wget -0 ~/oai-cnbg-fed/docker-compose/docker-compose-basic-nrf.yaml
https://gitlab.eurecom.fr/oai/openairinterfacebg/-

—

/raw/develop/doc/tutorial_resources/docker-compose-basic-
— nrf.yaml?inline=false

e Copy oai_db.sql to /oai-cnbg-fed/docker-compose/database

—

wget -0 ~/oai-cnbg-fed/docker-compose/database/oai_db.sql
https://gitlab.eurecom.fr/oai/openairinterfacebg/-
/raw/develop/doc/tutorial_resources/oai_db.sql?inline=false

Note: In the event of having a SIM Card Programmer, we can modify its internal parameters
using the application uicc-v2.6 from Open Cells Project (Code Snippet 3). Otherwise, we will
need to have an already programmed SIM and modify the CN database values to fit into SIM

ones.

5G Network Setup


https://open-cells.com/d5138782a8739209ec5760865b1e53b0/uicc-v2.6.tgz
https://open-cells.com/

sudo ./program_uicc -adm 12345678 -imsi 001010000000001 -isdn
00000001 -acc 0001 -key fec86ba6eb707ed08905757b1bb44b8f -opc
C42449363BBAD02B66D16BC975D77CC1 -spn "OpenAirInterface"
—authenticate

Listing 3: SIM Programming with uicc-v2.6

2.1.2 Configuration

Once having OAI CN5G installed with the default setup, we will need to change the default
configuration with our specific configuration. Briefly, OpenAirInterface5G has virtualized all the
components/modules of the 5G system architecture (Fig. 1), in specific, every component has
been implemented in its own docker container. Hence, its is important not only to configure
the 5G network (MCC, MNC, ...) but we also need to check the connection between the docker
containers, each with its own configuration file.

From now on, we will consider that we have an already programmed SIM and we need to adapt
the CN)HG to it.

First, we will modify the main configuration file (docker-compose-basic-nfr.yaml) to:

e Change MCC and MNC values according to the programmed SIM card. In our case,
<MCC_SIM> and <MNC_SIM> are 208 and 92, respectively.

From the oai-amf and oai-spgwu services, we will need to set properly the following fields:

— oai-amf:
% MCC = <MCC_SIM>
* MNC = <MNC_SIM>
* SERVED_GUAMI_MCC_O = <MCC_SIM>
* SERVED_GUAMI_MNC_O = <MNC_SIM>
* PLMN_SUPPORT_MCC = <MCC_SIM>
*+ PLMN_SUPPORT_MNC = <MNC_SIM>

— oai-spgwu:
* MCC
* MNC

<MCC_SIM>
<MNC_SIM>

o For the authentication procedure to suceed we need to add the information of our SIM card
to the database. We can follow two strategies:

1. Before starting the CN5G and creating the docker containers, we can modify the
default configuration file ( /oai-cnbg-fed/docker-compose/oai db.sql):

2. If the docker containers have already been created, we can access the mysql container
and update or insert new UE subscriptions to the database. The info can be inserted
using the mysql command line client:

5G Network Setup 5


https://open-cells.com/d5138782a8739209ec5760865b1e53b0/uicc-v2.6.tgz

sudo mysql -h 192.168.70.131 -u test -p
Enter password: test

mysql> USE oai_db;

mysql> INSERT INTO ~AuthenticationSubscription™ (Tueid”,
“authenticationMethod™, “encPermanentKey , "protectionParameterId’,
“sequenceNumber”, “authenticationManagementField , “algorithmId ,
“encOpcKey™, “encTopcKey , “vectorGenerationInHss , "nbgcAuthMethod,
“rgAuthenticationInd™, “supi’) VALUES (...);

mysql> INSERT INTO ~SessionManagementSubscriptionData” (“ueid’,
“servingPlmnid™, “singleNssai~, “dnnConfigurations™) VALUES (...);

mysql> exit;
Listing 4: OAI CN5G mysql container

2.1.3 Starting the CN5G

Lastly, we can run the CN5G executing the following commands:

cd ~/oai-cnbg-fed/docker-compose
python3 core-network.py -type start-basic -scenario 1

Listing 5: Running the OAI CN5G

6 5G Network Setup



2.2 OAl gNB

The gNB (base station) must also be installed and configured. We installed it on the same PC
as the core network, to facilitate the communication between them.

2.2.1 Setup

There are some prerequisites to set up the base station. First of all, we need to build the UHD
drivers (free & open-source software driver and API for the Universal Software Radio Peripheral
SDR platform). This can be done using the following commands:

sudo apt install -y libboost-all-dev libusb-1.0-0-dev doxygen python3-docutils
— python3-mako python3-numpy python3-requests python3-ruamel.yaml
— python3-setuptools cmake build-essential

git clone https://github.com/EttusResearch/uhd.git ~/uhd
cd ~/uhd

git checkout v4.3.0.0

cd host

mkdir build

cd build

cmake ../

make -j \$(nproc)

make test # This step s optional
sudo make install

sudo ldconfig

sudo uhd\_images\_downloader

Listing 6: Build UHD from source

Once this step has been completed, we can proceed and build the OAI gNB (Code Snippet 7).

2.2.2 Configuration

In order to get the base station to work, some changes must be made to the default configuration,
so we modified the gnb.sa.band78.fr1.106PRB.usrpb210.conf file. This configuration file
changes depending on the band and SDR. being used. In our case we are using the n78 band and
the USRP B200 SDR, and we modified some extra settings:

e Set the proper MCC and MNC, in this case 208 and 92, respectively.

e Check that the gNB and AMF IPs are properly set. In our case, we had to change the
gNB IPs shown in the file to 192.168.1.129/24. The AMF IP was already set correctly by
default (192.168.1.132/24, the IP of the AMF docker container).

5G Network Setup 7


https://github.com/EttusResearch/uhd
https://github.com/EttusResearch/uhd

# Get openairinterfacebg source code

git clone https://gitlab.eurecom.fr/ocai/openairinterfacebg.git
— ~/openairinterfacebg

cd ~/openairinterfacebg

git checkout develop

# Install OUOAI dependencies
cd ~/openairinterfacebg
source oaienv

cd cmake\_targets

./build\ _oai -I

# Build OAI gNB

cd ~/openairinterfacebg

source oaienv

cd cmake\_targets

./build\_oai -w USRP -ninja -nrUE -gNB -build-1ib all -c

Listing 7: Build OAI gNB

2.2.3 Starting the gNB

The starting procedure depends on the SDR used and the band. In our case, for the USRP B200
and band 78 we used the following commands:

cd ~/openairinterfacebg

source oaienv

cd cmake_targets/ran_build/build

sudo ./nr-softmodem -0 ../../../targets/PROJECTS/GENERIC-NR-
— bBGC/CONF/gnb.sa.band78.fr1.106PRB.usrpb210.conf -sa -E
— —continuous-tx

Listing 8: Running the OAI gNB

8 5G Network Setup



2.3 UE: Quectel RM500Q-GL + EVB

The Quectel RM500Q-GL is a 5G module optimized specially for IoT/eMBB applications. It
supports both 5G NSA and SA modes, and it comes with an evaluation board for testing and
debugging purposes. The important things that the EVB has are:

e USB-C port to provide power and connection to the serial port. It is used to send AT
commands to configure the module. For power it also has a DC barrel jack input. Both
must be connected, as the USB does not provide enough power to the evaluation board.

o Ethernet expansion card. It allows us to use the board as a modem through an Ethernet
cable.

o Coaxial connectors and cables for up to 6 antennas. In this case, the module only uses four
of them. The antenna pins (Fig. 2) must be connected to the antennas using the cables
provided by the evaluation board cables. Each antenna function can be seen in Fig. 3.

L)
QUECTEL

XXX

RM500Q-GL -

1-XX
RM500QGLXX—XXX~XXXX

ANTO ANT1 ANT2 GNSSL1 ANT3

Figure 2: RM500Q-GL antenna pins.

2.3.1 Pre-configuration

If it is meant to be used in Windows, we need all the drivers that are available to download in
the Quectel official web.

Although Windows is recommended by OpenAirlnterface5G, it is also possible to setup the
module with Ubuntu, and it doesn’t even need special drivers to work with.

5G Network Setup 9



5G NR

LB MHB n77/n78  n79
Antenna WCDMA/LTE
Refarmed nd41  n77/n78/n79 falipg) ek itk i)
LTE LMHB TRX:
ANTO  LMHBTRX TRX1" TRX1" LTE UHB PRX MIMO?;  617-860  1452-2680 3300-4200 4400-5000
WCDMA LMHB TRX;
LTE MHB PRX MIMO;
MHB PRX
ANT1 o TRXO0 DRX0 LTE UHB DRX 2; - 1452-2690 3300-4200 4400-5000
MIM
LAA PRX;
LTE MHB DRX MIMO;
ANT2 MHB DRX
DRX0O  DRX11 LTE UHB DRX MIMO ?: - 1450-2690  3300-4200  4400-5000

GNSSL1  MIMO
LAA DRX;

LTE LMHB DRX;
ANT3 LMHB DRX DRX1" TRX0 LTE UHB TRX 2; 617-960 1452-2690 3300-4200 4400-5000
WCDMA LMHB DRX;

Figure 3: RM500Q-GL antenna mapping.

2.3.2 Setup

All the AT commands have to be sent through the serial port with 115200 baudrate and 1 stop
bit. It is recommended to use “Cutecom”, a graphical serial terminal.

# MUST be sent at least once everytime there is a firmware upgrade!
AT+QMBNCFG="Select","ROW_Commercial"

AT+QMBNCFG="AutoSel",0

AT+CFUN=1,1

AT+CGDCONT=1,"IP","oai"

AT+CGDCONT=2

AT+CGDCONT=3

# (Optional, debug only, AT commands) Activate PDP context, retrieve IP address
— and test with ping

AT+CGACT=1,1

AT+CGPADDR=1

AT+QPING=1,"openairinterface.org"

Listing 9: OAI default Quectel setup

First of all, we need to configure which SIM slot will be used. The command to change the
slot is “AT4+QUIMSLOT=<num>", in which “<num>" has to be the number of the slot to be
used (1 or 2).

Then we need to enable both the SIM card detection and insertion status report with the com-
mands “AT+QSIMDET=1,1" and “AT+QSIMSTAT=1" respectively. This is needed in order to
force a reconnection from the UE to the base station by removing and inserting the SIM.

10 5G Network Setup



Finally, once enabling and setting up everything, as we can see at Fig. 4 and Fig. 5, we have
been able to successfully setup a 5G network.

CuteCom - Default - o

Sessions  Help
Close Device:

AT+CREG? -
AT+C5GREG?

AT+COPS?

AT+QPING=1,"192.168.70.123"

AT+CGDCONT=1,"IP","0ai"

AT+QIACT=1.1

AT+QPING=1,"8.8.8.8".5.5

AT+QPING=1,"8.8.8.8"

AT+QPING=1,"openairinterface.org"

nput: | CRILF v Chardelay: |0ms |~ | Sendfile... | Plain

+QPING: 0,"8.8.8.8",32,20,255% -
;C’)P\NG: 0."8.8.8.8",32,20,255%

;C;P\NG: 0.4.4,0,18,20,18% '

o

-:-(.Z')P\NG: 0,"163.172.242.230",32,73,255% '+

-:-g)P\NG: 0,"163.172.242.230",32,70,255%

;C’?P\NG: 0,"163.172.242.230",32,70,255% '

-:-(;P\NG: 0,"163.172.242.230",32,69,255% '

+QPING: 0,4,4,0,69,73,69% "

Clear Hex output Logging to: frootjcutecom.log

Device: /dev/ttyUSB2 Connection: 115200 @ 8-N-1

Figure 4: Multiple pings from the Quectel to the gNB

Note: If the default OAI Quectel setup does not work, for example, an error 561 in a QPING AT
command, it is most likely to be an error with the activation of the PDP CONTEXT. Hence, using
AT+QIACT=1,1 it solved the problem, activating the PDPCONTEXT. The AT+CGACT=1,1 command
shown in the previous listing should work exactly the same way.

2.3.3 NetworkManager setup

Once having the Quectel succesfully connected to the base station and being able to establish a
communication, we will configure the Quectel module as a 5G modem for a host machine. Hence,
we will have to configure NetworkManager (nmcli) to add a new GSM connection. Briefly, we
will create a new configuration file in /etc/NetworkManager/system-connections with the
*.nmconnection extension. Specifically, using PPP (Point-to-Point Protocol) for establishing
a connection with the Quectel module over the GSM network via serial interface between the
modem and th host machine (Code Snippet 10). As a result, we can see at Fig. 6, we have
successfully established a connection between a host machine via the Quectel modem to the base
station.

Note: We encountered issues when connecting the Quectel RM500Q-GL modem to a regular
laptop. Despite checking the compatibility of kernel versions and operating systems, the modem
was never detected on the laptops for unknown reasons.

5G Network Setup 11



Capturing from dem

View Go Capture Analyze stat

s Telephony Wireless Tools

r P > - —
&® N Qe EFES(E QQQT
[W]current filter: ip. 168.70.129 [X]= K3
No. Time Source Destination Protocol Lengtt Info <
2362 436.495760153 192.,168.70.132 SCTP 106 HEARTBEAT

2493 458.473731538 102.168.76.132
2517 458.699748071 192.168.76.132
4 2 ]

NGAP/N.. 208 PDUSessionResourceSetupRequest
CK

T (request in

2657 479.912362285 8.8.8.8 117 (request 1.
2661 479.932347309 8.8.5.8 1d=0x6261, se =117 (request i
2665 479.952214497 8.8.8.8 10=0x6201, seq=3/768, ttl=117 (request i.
2669 479.972214845 8.8.8.8 1d=0x6201, seq=4/1624, ttl=117 (request
2727 489.747734994 192.,168.70.132

2729 489.747769958 102.168.70.132 192.168.70.129 SCTP 106 HEARTBEAT_ACK

2809 503.063052362 8.8.5.8 12.4.4.2 GTP <I. 118 Echo (ping) reply  id=0x3901, 7 (request in
2813 503.082227398 8.8.8.8 NN GTP <L. 116 Echo (ping) reply  id=0x3901, 117 (request i.
2817 503.102219281 8.8.8.8 12.1.1.2 GTP <L. 118 Echo (ping) reply  1d=0x3961, 117 (request i
2821 503.122331665 8.8.5.8 12.4.4.2 GTP <I. 118 Echo (ping) reply  id=0x3961, se b 117 (request i
2877 511,175850225 8.8.8.8 12.1.1.2 GTP <D. 140 Standard query response 0x7ef7 A openairinterface.org A 163.1.
2881 511.250687513 163.172.242.230 12.1.1.2 GTP <L. 118 Echo (ping) reply  1d=0x3561, seg=0/8, ttl=48 (request in 2
2885 511.320732852 163.172.242.230 12.1.1.2 GTP <. 118 Echo (ping) reply  id=0x3501, /256, ttl=48 (request in
2889 511,390625577 163,172.242.230 RN GTP <L. 118 Echo (ping) reply  id=0x3501, /512, ttl=48 (request in.
2893 511.460607714 163.172.242.230 12.1.1.2 GTP <I. 118 Echo (ping) reply  1d=0x3561, seq=3/768, ttl=48 (request in.
2951 522,511780123 192.168.70.132 192.168.70.129 SCTP 106 HEARTE

2053 522.511799348 102.168.70.132 192.168.70.129 scTP 106 HEARTBEAT_ACK

3122 555.283763240 192.168.70.132 192.168.70.129 SCTP 106 HEARTBEAT

3124 555.283804010 192.,168.70.132 192.168.70.129 SCTP 106 HEARTBEAT ACK

3288 588.051776624 192.168.70.132 192.168.70.129 scTP 106 HEARTBEAT

3290 588.051789470 192.168.70.132 192.168.70.129 SCTP 106 HEARTBEAT ACK

3506 620.819770563 192,168.70.132 192,168.70.129 SCTP 106 HEARTBEAT

3508 626.819817237 192.168.70.132 192.168.70.129 scTP 106 HEARTBEAT_ACK

3672 653.583746326 192.168.70.132 192.168.70.129 ScTP 106 HEARTBEAT

3674 653.583756335 192.169.70.132 192.168.70.129 ScTP 106 HEARTBEAT ACK

3838 686.351750833 102.168.70.132 192.168.70.129 SCTP 106 HEARTBEAT

3840 686351804127 192,168.70.132 192.168.70.129 SCTP 106 HEARTBEAT ACK

4024 719.119772555 192.168.70.132 192.168.70.129 scTP 106 HEARTBEAT

4626 719.119785616 192.168.70.132 192.168.70.129 SCTP 106 HEARTBEAT ACK

4222 751.887758837 192.168.70.132 192.168.70.129 SCTP 106 HEARTBEAT

4224 751.887799851 192.168.70.132 192.168.70.129 scTP 106 HEARTBEAT_ACK

4387 782.611735307 192.168.70.132 192.168.70.129 ScTP 106 HEARTBEAT

4390 784659774484 192,169.70.132 192,168.70.129 SCTP 106 HEARTBEAT ACK

4553 813.327750865 192.168.70.132 192.168.70.129 scTP 106 HEARTBEAT

4558 817427773443 192.168.70.132 192.168.70.129 ScTP 106 HEARTBEAT ACK

4728 846.005757877 192.169.70.132 192.168.70.129 ScTP 106 HEARTBEAT

4771 850.191791873 102.168.70.132 192.168.70.129 SCTP 106 HEARTBEAT_ACK

4912 878.863759677 192.168.70.132 192.168.70.129 SCTP 106 HEARTBEAT

4947 886.911792263 192.168.70.132 192.168.70.129 scTP 106 HEARTBEAT_ACK

5108 911.635734408 192.168.70.132 192.168.70.129 SCTP 106 HEARTBEAT

5111 913.679787025 192.168.70.132 192.168.70.129 SCTP 106 HEARTBEAT ACK

5270 944.309759322 102.168.70.132 192.168.70.129 scTP 106 HEARTBEAT

5275 946.447795618 192.168.70.132 192.168.70.129 ScTP 106 HEARTBEAT ACK -

User Datagram Protocol, Src Port: 2152, Dst Port: 2152 =
GPRS Tunneling Protocol

Internet Protocol Version 4, Src: 8.8.8.8, Dst: 12.1.1.2

Internet Control Message Protocol

©2 42 01 d2 Of 1e 02 42 cO a8 46 86 08 60 45 80 B B F O E
9010 0O 68 2a d3 40 00 40 11 01 5a cO aB 46 86 c0 a8  -h*-@-§ Z F
20 458108 68 08 68 00 54 Qe be 34 FF 00 4493 1a F--h-h-T -4 D
€7 65 0@ @0 60 85 01 00 ©6 00 45 @0 60 3c 00 B0 e E<
80 80 75 01 28 af 08 08 03 68 Gc 01 01 62 00 BO u-(
0 1178 62 01 00 09 00 7b 38 38 61 61 61 61 61 61 b-'-{ 88aaaaaa
G0 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 61 asasaasa aaaaaasa
70 61 61 61 61 61 61 aaaaaa

@ 7 demo-oai: <live capture in progress> Packets: 18843 - Displayed: 230 (1.2%) Profile: Default

Figure 5: Multiple pings received (gNB)

5G Network Setup



[connection]
id=quectel-oai-ppp

type=gsm
autoconnect=false

[gsm]
apn=oai
device=/dev/ttyUSBO

(ppp)
lcp-echo-failure=5
lcp-echo-interval=30
user=

password=

[ipv4]
method=auto

[ipv6]
addr-gen-mode=stable-privacy
method=auto

Listing 10: NetworkManager GSM connection

(a) Host machine (client)

Capturing from dem

St ol o 1 e s o R

®

k2

QQ

32503
32504

32505

32506

32507

32508 4

32509

32600

32601

32602 4

32603

32604

32605

32606 4t

32607

32608 4585

32609

32610

32611

32612

32613

32614 ass5 ssrdeas

32615

32615

Sao1s dses.oeznse i1

52618 4585.0962000. 192.168.70.134
32619 4586.0067311. 216

32620 4586.0067488.. 21 s.z:s 34 5
32621 4586.0257045. 12.1.

Srozs dsun.caorisy. ioh ioh.70.134

32625 45800207750 12.1.1
52626 45 G26Te57. 193168, w 134
32627 4586.0358418_ 12

3536 1762, 165.10.154

32635 4580.0387601- 216.239.34.36
32636 4586.0387634. 216.239.34.36
32637 4586.0387865.. 216.239.34.36

Destination
12.1.1.3
216.239.34.36
216.239.
216,239
216.239.
216.239.

216

216]

216.230

216.239.34.36

216.239.38.30
216.230.34.36
216.239.34.36

53

102.168.10.134
102.168,70.134
12.1.1.3

0242 CO a8 46 84 02 42 80 OT 91 76 0809 4562 B F B
00 5c 09 27 40 00 40 84 20 O cO a8 46 81 cO a8  \-'0-0

9 00 60 60 00 00 00 60 80 60 60 00
00 00 01 ba 22 00 61 60 00 0 42 a1 b3 44 bF 90

8d 69 09 60 00 60 69 60 00 00

© 7 demo-oai: <live capture in progress>

4684 84 73 96 Oc 08 30 e 9150 Ob ce 67 04 00 F.-s
00 3c 09 01 00 35 62 00 96 0c CO a8 46 84 60 60 <8
00 00 09 00 O

Protocol Lengtt Info
GTP <T.. 149 Application Data
GTP <T. 110 35700 - 443 [ACK] S
G <T. 116 443 [ACK] S¢
6P <T. 423
ol 6 - 443

- 443

< 443

- 443 Le

ation

ation

51184

TP <U.. 104 51188 - 48
wp 150 51184 - 443 Ler
GTP <U. 158 51184 - 443 Ler

113 51164 ~ 445 Ler

0P 1399 443
e 137 443
GTP <U. 1443 443 ~

Frane 1: 106 bytes on wire (848 bits), 106 bytes captured (848 bits) on interface demo-oal, id
Eiharnet 17, Ste: Ooi4p10a:OTL01 16 (o2 42:84:07 o1, 16): DSL: 0243 corab:4a:54 (02 451co:a0:46:84)
Internet Protocol Version 4, Src: 192.168. 7¢ 76.13

Strean Control Transmission Protocol, Src Port: 33967 (33987), Dst Port: 38412 (38412)

0.120, Dst: 192.168.

Packets: 32772 - Displayed: 32772 (100.0%)

(b) Wireshark capture (gNB)

Figure 6: A connection between a client and the 5G base station (gNB)

5G Network Setup

Profile: Default

13



3 Hardware architecture

In research studies, having a controlled environment and the ability to manipulate conditions is
important. However, when working within a 5G network that operates through radiofrequency, it
is evident that interferences can occur, and the behavior of the network may not remain constant.
Consequently, the environment becomes practically uncontrolled.

\J
Power Splitter Power Splitter
USRP B200mini

0 1 I_i La-l J 1 2 3

| J U
[ va B vae B lil  vay B  ran B e B === )
™ RX ™ RX ™ RX ™ RX ™ RX ™ RX 1 O Passive Elements |
Quectel Quectel Quectel Quectel 1 . 1
RM500Q-GL RM500Q-GL RM500Q-GL RM500Q-GL i O BaseStation

I O 10T 5G Modem 1
L J

Figure 7: Wired 5G network

Hence, the Figure 7 represents a wired 5G network with a base station (based on the plat-
form USRP B200mini) along with multiple 5G IoT modems (Quectel RM500Q-GL) that will
establish connections with clients. This particular 5G network, provides us a complete control
over the network, also minimizing external interference. This configuration allows us to modify
individual client conditions, such as manipulating the modulation of each client by attenuating
the received signal, among other possibilities. As a result, in Figure 8 and 9 we can see the final
5G network setup, with the corresponding signal attenuation and power splitting across all the
5G ToT modems.

Finally, while the setup mentioned earlier provides an environment with absolute control, it
also lacks the flexibility and realism of a typical 5G network. In this setup, all clients must be
in close proximity to each other, as shown in Figure 8. Additionally, the complexity of the setup
increases as it requires additional equipment such as power splitters, attenuators, and coaxial
cables. These components are necessary to establish the wired connections and manipulate the
conditions of each client. The addition of such equipment adds to the overall complexity and
infrastructure requirements of the setup.

14 5G Network Setup



5G Network Setup

Figure 9: Signal management though power splitter

15



	Introduction
	5G implementation
	OAI CN5G
	Setup
	Configuration
	Starting the CN5G

	OAI gNB
	Setup
	Configuration
	Starting the gNB

	UE: Quectel RM500Q-GL + EVB
	Pre-configuration
	Setup
	NetworkManager setup


	Hardware architecture

